

CUBISM

Development of a high temperature surface acoustic wave pressure sensor based on piezoelectric fresnoite glass-ceramics

Florian DUPLA

Défense de thèse externe

Sous la supervision de : Prof. Maurice GONON

<u>Contexte</u>

Monitoring in situ du séchage de bétons réfractaires → Projet <u>CUBISM</u>

- Eau pour mise en forme et durcissement
- Procédé empirique et long (> 10 jours)
- Haute température : > 1000°C

Université de Mons

• Problèmes sous 600°C : Humidité & Pression

Florian DUPLA – Présentation de thèse externe – Mardi 17 Novembre

<u>Sommaire</u>

- Etat de l'art
 - Piézoélectricité
 - Capteurs SAW (Surface Acoustic Wave)
 - Vitrocéramiques
 - Fresnoite
- Résultats
 - Caractérisations à haute température
 - Développement et test d'un dispositif SAW
 - Développement et test d'un capteur de pression SAW
- Conclusions et perspectives

La piézoélectricité

Effet direct

- Sollicitation mécanique ↔ sollicitation électrique
- Cristal : modification barycentres des charges

Effet indirect

Electric

La piézoélectricité

- 32 groupes ponctuels de symétrie
- Pyroélectricité : Influence de la température sur la polarisation électrique

La piézoélectricité

Ferroélectriques :

- Domaines de polarisation
- Orientation des dipôles après synthèse

Défauts :

- Dépolarisation dans le temps et température
- Température de Curie

Température de Curie d'un piézo

La piézoélectricité

La piézoélectricité

• Matériau piézoélectriques HT existants

Material	d _{eff} (pC/N)	T _{Curie} (°C)	T _{max} (°C)	Forme
Quartz	2.3	573	300	Monocristal
LiNbO3	21	1150	350	Monocristal
Aurivillius	18.4	750-950	> 500	Polycristal
GaPO4	4.5	N/A	950	Monocristal
Langasite	3.2	N/A	900	Monocristal
ReCOB	15.8	N/A	1000	Monocristal
Melilite	14.5	N/A	600	Monocristal

→ Nombreux monocristaux : coût élevé

Les capteurs SAW (surface acoustic waves)

Longitudinale

- SAW : longitudinales + transversales
- Générer des ondes SAW

Les capteurs SAW (surface acoustic waves)

• Substrat piézoélectrique

- Signal sinusoïdal
- Polarisation opposée entre
- 2 doigts adjacents
- Changement de polarité : SAW
- Zone sensible entre input et output (humidité, pression...) Capteur SAW

Création de SAW par une IDT

Sensitive

layer

Surface Acoustic Wave

Output IDT

• Capteur à bas coût (laissé in situ)

Input IDT

Résistant jusqu'à 600°C

Piezoelectric substrate

- Pas de perte de piézoélectricité
- Maintien thermomécanique

Les vitrocéramiques

Synthèse d'une vitrocéramique à partir d'un verre parent

Synthèse d'une vitrocéramique :

- Mélange d'oxydes
- Fusion d'un verre parent
- Traitement thermique de cristallisation
- Matériau composite
 - Cristaux + Verre résiduel

Exemple de microstructure cristaux + VR

Les vitrocéramiques

Cristallisation :

- Etape de nucléation
- Germination des nucléi
- Etape de cristallisation
- Croissance cristalline
- Températures optimales

Les vitrocéramiques

Différentes nucléations et cristallisations :

- En volume : matériau isotrope (généralement recherché)
- En surface : matériaux anisotrope avec des cristaux croissants vers le cœur

Propriétés dépendantes de :

- Phase(s) cristalline(s)
- Tailles & forme des cristallites
- Isotropie

- Phase vitreuse résiduelle
- Fractions volumiques des phases

Les vitrocéramiques

Problème de différence de dilatation Δα :

- Matériau composite (cristaux + VR)
- Différents α en température (coefficients de dilatation linéaires)
- Création de contraintes au refroidissement après cristallisation, voire d'endommagement

Endommagement par désaccord dilatométrique

Fresnoite: Une vitrocéramique piézoélectrique

- Cristaux de Sr₂TiSi₂O₈
- 2 SrO · 1 TiO₂ · 2 SiO₂ + excès SiO₂ (+ autre oxydes)
- Fusion d'oxydes et coulée d'un verre
- Traitement de cristallisation de surface

Cristallisation de surface

Structure de la fresnoite

Cristallisé en <u>surface</u>

(002)

- Non ferroélectrique
- Quadratique
- Polarisation sur l'axe \vec{c}
- Orientation : (002) ou (201)
- d₃₃ ≈ 8-14 pC/N

Etat de l'art • Synthèse • Caractérisation HT • Dispositif SAW • Capteur de pression • Variation compo

Fresnoite: Une vitrocéramique piézoélectrique

Synthèse de vitrocéramique de fresnoite :

- Isotherme
- Gradient de température
- Nucléation électrochimique
- Traitement de surface US

Orientation préférentielle de l'axe polaire

Orientation après cristallisation :

- Variation de l'orientation préférentielle
- (002) ou (201) selon les conditions
- Souvent un basculement (002) vers (201)
- \rightarrow thèses précédentes et littérature

Fresnoite: Une vitrocéramique piézoélectrique

Basculement de l'orientation préférentielle

Fresnoite: Une vitrocéramique piézoélectrique

Composition : $2 \text{ SrO} \cdot 1 \text{ TiO}_2 \cdot 3.3 \text{ SiO}_2 \cdot 0.2 \text{ K}_2 \text{O} \cdot 0.1 \text{ Al}_2 \text{O}_3 \text{ (A10)}$

Mélange d'oxydes en voie humide (isopropanol)

Coulée après fusion à 1500°C

Plaque de verre

Synthèse de vitrocéramique de fresnoite :

- Mélange en voie humide
- Fusion à 1500°C
- Recuit à 650°C
- Découpe et polissage
- Cristallisation

Verre → Vitrocéramique

Fresnoite: Une vitrocéramique piézoélectrique

Cristallisation

$\label{eq:composition} \mbox{Composition}: 2\ \mbox{SrO} \cdot 1\ \mbox{TiO}_2 \cdot 3.3\ \mbox{SiO}_2 \cdot 0.2\ \mbox{K}_2\mbox{O} \cdot 0.1\ \mbox{Al}_2\mbox{O}_3\ \mbox{(A10)}$

Cristallisation de surface (optique)

70 v% Fresnoite Sr₂TiSi₂O₈

- Tetragonal crystal system
- \vec{c} polar axis

30 v% Residual glass

Stabilité structurelle

- Piézoélectricité induite par la texturation
- DRX HT tous les 100°C sur la vitrocéramique
- Pas de décomposition thermique jusqu'à 1100°C
- Maintien orientation préférentielle
- Basculement de 1000°C à 1100°C
- → Phase cristalline Sr₂TiSi₂O₈ piézoélectrique jusqu'à 1100°C

DRX HT sur vitrocéramique orientée (201)

Vitrocéramique de fresnoite après cristallisation à 900°C

Vitrocéramique de fresnoite après post-traitement à 1200°C

- Formation de SrTiO₃
- SiO₂ et Sr en excès –
- Affaissement
 verre résiduel

Etat de l'art • Caractérisation HT • Dispositif SAW • Capteur de pression

Propriétés thermomécaniques : Dilatométrie

Propriétés thermomécaniques : IET (Impulse Excitation Technique)

Aux hautes températures :

- Verre résiduel viscoplastique > Tg
- Diminution viscosité quand T *¬*
- Chute des propriétés méca de Tg à TLp (800°C)
- TLp = ramollissement dilatométrique
- Chute drastique après 800°C
- → Forte influence du verre résiduel

• RT : E = 84 GPa

- Phénomène d'hystérésis dû au désaccord dilatométrique entre FRES et VR
 - Réparation au-dessus de Tg (650°C)
- ↗ contraintes de Tg à 100°C
- Endommagement de 100°C à RT
- Matériau déjà endommagé à la chauffe

→ Hystérésis

Essais IET A10 – hautes températures

Vieillissement des propriétés piézoélectriques

- Mesure d₃₃ après cristallisation et vieillissement 800°C/100h & 1100°C/5h
- Piézomètre
- Polissage surfaces sur 500 μm
- Découpe dans l'épaisseur car symétrie miroir

Piézomètre

Thermal treatment	Sample A d ₃₃ (pC/N)	Sample B d ₃₃ (pC/N)
After crystallization	9.6	10.2
800°C / 100h	9.2	10.3
1100°C / 5h	9.3	10.0

d₃₃ avant et après traitements thermiques

→ Pas de diminution du coefficient d_{33} → En accord avec DRX-HT

Conclusion sur les caractérisations haute température

Stabilité structurelle :

• Tmax = 1100°C

Propriétés thermomécaniques :

- Tg_{A10} = 650°C
- $\alpha_{A10(200-650^{\circ}C)} = 10.4 \times 10^{-6} \text{ K}^{-1}$
- E = 84 GPa à RT
- IET : Hystérésis dû à l'endommagement créé par le désaccord dilatométrique
- Forte influence du verre résiduel sur le comportement thermomécanique

Propriétés diélectriques :

• Pas d'évolution du d₃₃ après vieillissement thermique

→ Matériau apte à fonctionner aux HT = réalisation d'IDTs et essais de propagation SAW

Sputtering

- Sputtering de Constantan (55%Cu-45%Ni) & Platine
- Constantan = couche d'adhésion
- Platine = couche de conduction HT
- Tests d'adhésion par ruban adhésif
- Différentes épaisseurs testées
- Test d'accroche après recuit 900°C/2h

Profilométrie 3D pour mesurer l'épaisseur (+600s Pt)

→ Meilleure adhésion avec 200 nm de Platine sur 40 nm de constantan
 → Traitement thermique obligatoire pour améliorer l'adhésion

Université de Mons

Ablation laser

- Ablation laser du dépôt métallique
- Réalisation des IDTs aux dimensions voulues
- → Endommagement de la vitrocéramique
- → Besoin d'optimiser les paramètres afin de ne pas ablater la vitrocéramique

Profilométrie 2D – Endommagement vitrocéramique

Evolution de la fréquence selon la taille des IDTs

2 MHz : p = 312.5 μm 5 MHz : p = 125 μm

Dispositif SAW avec IDT (2MHz)

→ Paramètres d'ablation maîtrisés pour éviter l'endommagement du substrat

Essais SAW HT : Emission et observation des SAW

- Contact électrique entre fils et dispositif par laque d'argent
- Signal sinusoïdal sur l'IDT d'entrée
- Signal en output monitoré par un oscilloscope relié à MATLAB
- Mesures de RT jusqu'à 950°C
- → Mesures d'amplitude & fréquence

Signal de réception à RT (bleu) et à 625°C (vert)

DANGER

Essais SAW HT : Dispositif 2 MHz

Signal de sortie SAW – Dispositif 2 MHz

- A = Tg du verre résiduel
- B = Point de Littleton T_{Lp} du verre résiduel (ramollissement dilatométrique)
- C = Température max d'utilisation

→ Température maximale du capteur = 950°C

Essais SAW HT : Dispositif 2 MHz

Schématisation du comportement de l'onde SAW avec l'augmentation de la température

Signal de sortie SAW – Dispositif 2 MHz

- T < Tg = variations → compétition entre disparition endommagement et affaiblissement des liens interatomiques (comme IET)
- Tg < T < T_{Lp} = *i* forte → Cristaux piézo moins contraints par le verre résiduel viscoplastique et réparation du matériau
- T_{Lp} < T = ↘ drastique → Chute importante des propriétés thermomécaniques (comme IET)

Essais SAW HT : Dispositif 2 MHz

- Hystérésis semblable à celle obtenue en IET
- Phénomène dû à l'endommagement (désaccord dilatométrique)
- → Signal de sortie dépendant des propriétés thermomécaniques
- → Forte influence de l'endommagement (et donc du verre résiduel)

Essais SAW HT : Dispositif 2 MHz

- Observation sur 4 dispositifs
- Variation dans les fréquences (vitesses de propagation)
- Comparaison des fréquences relatives à Tg et T_{Lp}

Essais SAW HT : Dispositif 5 MHz

Amplitude SAW chauffe/refroidissement – 5 MHz

Amplitude SAW chauffe – Comparaison 2MHz et 5 MHz

- Pas d'hystérésis observable contrairement à 2 MHz
- Signal moins affecté par Tg et T_{Lp} que 2 MHz
- Signal de sortie relativement bruité, surtout au-dessus de Tg

→ Plus forte atténuation pour 5 MHz

→ Amplitude 5 MHz moins influencée par les problèmes d'endommagements

→ Données peu fiables au-dessus de Tg

Essais SAW HT : Dispositif 5 MHz

- Chute à Tg (650°C) et remontée à Tlp (800°C), puis chute finale
- Fréquence relative fortement influencée par la température
- Fréquence qui reste élevée malgré les variations

$\rightarrow \nearrow$ f = $\searrow \lambda$ = plus fort impact de la microstructure

→ Fréquence 5 MHz fortement influencée par le verre résiduel

Conclusion sur les dispositifs SAW

Réalisation du dispositif :

- Dépôt de couche métallique maîtrisé (40 nm constantan + 200 nm Pt)
- Très bonne adhésion et bonne conductivité, vitrocéramique non endommagée

Essais SAW en température :

- Tmax = 950°C
- 2 MHz
- Amplitude dépendante des propriétés thermomécaniques
- Amplitude influencée par le verre résiduel et l'endommagement
- Fréquence relative qui diminue peu
- 5 MHz
- Amplitude moins influencée par l'endommagement
- Signal assez bruité
- Fréquence reste élevée mais fortement influencée par VR

 \rightarrow Tester une gamme de fréquence

→ Emission/propagation SAW maîtrisée = réalisation de capteurs de pression

Design du capteur de pression

→ Utiliser la vitrocéramique comme support = pas de contraintes à l'interface

→ Cavité à former sur le verre

 \rightarrow e = 1 mm et θ = 10 mm \rightarrow β = 0,10

Zone sensible

- Echantillon de verre de fresnoite
- Indenteur hémisphérique en Al₂O₃
- 800°C pendant 2h

Profilométrie 3D empreinte 2h (vue en coupe)

- Collage vitro/vitro à 1100°C / 2h avec charge
- → Collage par interdiffusion du verre résiduel

Cavité après collage vitro / vitro (1100°C, 2h, 2kg)

2h 2kg

→ Rayon de 5 mm au bout de 2h de TT à 800°C

Collage

→ Peu d'évolution dans le temps ou avec un indenteur plus lourd

→ Maintien de la cavité correctement scellée

Florian DUPLA – Présentation de thèse externe – Mardi 17 Novembre

Capteur 2 MHz

- Essais de pression à RT, de P_{atm} à 50 bars
- But = observer une augmentation du temps de vol avec la pression
- θ cavité = 9,6mm et e_{lame} = 1,1 mm

Enceinte de pression

→ Dû à la création d'ondes de Lamb car $e_{lame} = 1,1 \text{ mm et } \lambda \approx 1 \text{ mm}$

Capteur 2 MHz

- Points de mesure réalisés tous les 10 bars jusqu'à 50 bars
- Paliers de 3 minutes à raison d'1 point/seconde

2 MHz

→ Signal bruité surtout en amplitude

 \rightarrow Variation faible et non monotone de l'amplitude

→ Différences de 5 bars observables avec suffisamment de points de mesure

→ Sensibilité d'environ 0,75 ns/bar

→ Signal de sortie semblable au dispositif SAW (pas d'ondes de Lamb)

 \rightarrow Pas de variations de Δt en fonction de la pression et signal bruité

Université de Mons

Florian DUPLA – Présentation de thèse externe – Mardi 17 Novembre

Conclusion sur les capteurs de pression

Réalisation du capteur de pression :

- Réalisation d'une empreinte sur le verre
- Collage vitro/vitro grâce au verre résiduel

Essais sous pression :

- 2 MHz
- Maintient de l'étanchéité jusqu'à 50 bars
- Création d'ondes de Lamb
- Sensibilité ≈ 0,75 ns/bar
- 5 MHz
 - Pas de sensibilité à la pression
 - Ondes SAW

→ Capteur de pression 2 MHz fonctionnel

→ Diminuer épaisseur 5 MHz (et diminuer diamètre)

 \rightarrow Les ondes de Lamb sont plus sensibles aux variations de Δt

Conclusion générale

Caractérisation haute température A10 :

- Mise en évidence de l'endommagement créé par le $\Delta \alpha$
- Matériau fonctionnel pour les applications HT

<u>Dispositif SAW</u> :

- Fonctionne jusqu'à 950°C
- Propriétés thermomécaniques très influentes (surtout celles du verre résiduel)

Capteur de pression :

- Possibilité de mesurer la pression jusqu'à 50 bars avec capteur 2 MHz (sensibilité = 0,75 ns/bar)
- \bullet Ondes de Lamb plus sensibles aux variations de Δt

Perspectives

- Mesurer d₃₃ en température (vibromètre laser)
- Analyser FRES et VR synthétisés séparément pour comprendre leur influence
- Distinguer l'influence de l'émission et de la propagation sur le signal SAW
- Réaliser un capteur de pression 5 MHz fonctionnel en créant des ondes de Lamb
- Réaliser des mesures sous pression en température
- Connaître la composition réelle du verre résiduel
- Développement de nouvelles compo en changeant le verre résiduel

Remerciements

Maurice, Pascal, Francis, Marie-Sophie et Stella

Solange

Christine

Grégory, Maria, Nicolas, Védi, Jean-Pierre, Sandra, Dominique, Jean-Marc

rris

driving industry by technology

UNIVERSITE

^{de} Picardie

Marc, Nikolay, Hassan, Frédérique

Christian, Mohamed, Saliou, Florian Jean

Les étudiants et stagiaires : Marie, Margaux, Simon d'H., Simon L., Jérôme, Chloé

Ma famille et mes proches ! 🚳

Université de Mons

Merci pour votre attention

Pression de vapeur saturante de l'eau

Les différents groupes ponctuels

Cycle d'hystérésis d'un ferroélectrique

Material	α-quartz	LiNbO ₃	GaPO ₄	LGS	
Crystal system	Trigonal	Trigonal	Trigonal	Trigonal	
Piezoelectric coef. (pC/N)	d ₁₁ = 2.3	d ₁₅ = 70 d ₂₂ = 21	d ₁₁ = 4.5	d ₁₁ = 6.2	
T _{melting} (°C)	1700	1260	1670	1470	
T _{Curie} (°C)	573	1200	Х	Х	
T _{max} (°C)	300	450	800	900	
Thermal expansion coefficient (10 ⁻⁶ K ⁻¹)	0.4	$\alpha_a = 16.7$ $\alpha_c = 2.0$	$\alpha_{11} = 12.8$ $\alpha_{33} = 3.7$	$\alpha_{11} = 5.1$ $\alpha_{33} = 3.2$	
Mechanical quality factor Q_M	> 10 ⁵	2 × 10 ³	104	1.5×10^{4}	
Electric resistivity ρ (Ω.m)	> 10 ¹⁷ 6 × 10 ⁵ (300°C)	2 × 10 ¹² (200°C)	10 ¹⁵ 10 ⁵ (900°C)	> 10 ¹² (100°C) 10 ⁶ (700°C)	
Relative permittivity ε _r	4.5	$\epsilon_{r 11} = 85$ $\epsilon_{r 33} = 29$ 6.6		ε _{r 11} = 19 ε _{r 33} = 50	
SAW velocity (m.s ⁻¹)	3150	4000	2500	2740	
Electromech. coupling factor k (%)	0.10	2.12	0.55	0.66	

Effet d'un modificateur de réseau (Na2O ici)

Composition	2BaO-TiO ₂ -3SiO ₂	2SrO-TiO ₂ -3SiO ₂		
Density	4	3.6		
Relative permittivity ϵ_r	εr ₃₃ = 10	εr ₃₃ = 11.5		
d ₃₃ (pC/N)	7	14		
d _h (pC/N)	8.8	8.7		
g ₃₃ (mV.m.N ⁻¹)	88	138		
g _h (mV.m.N ⁻¹)	110	85		
Quality factor Q _M	1000 - 2000 800	1000 - 1500		

	Single-cr	ystal	Glass-ceramic			
Element	Bariu	m	Barium	Strontium		
Composition	Stoichion	netric	2SrO - TiO ₂ 2SiO ₂ - B ₂ O ₃	2SrO - TiO ₂ - 3.33 SiO ₂ - 0.4K ₂ O - 0.88 B ₂ O ₃		
CTE (10 ⁻⁶ K ⁻¹)	$\begin{array}{l} \alpha \approx 6.5 \; (<\!490 \; \text{K}) \\ \alpha_a = 2.5 \\ \alpha_c = 13 \\ (220\text{-}500 \; ^\circ\text{C}) \end{array} \qquad \begin{array}{l} \alpha_a = 8.7 \\ \alpha_c = 9.3 \\ (0 \; ^\circ\text{C}) \end{array}$		α = 9.7 (100-500 °C)	α _a = 8.3 α _c = 9.7 (30-600 °C)		

	(002) P220	(201) P220	(002) Mirror	(201) Mirror
γ _s ^d (mN/m)	30.89	26.38	28.74	24.05
γ _s ^p (mN/m)	9.94	22.95	26.98	40.80
γ _s (mN/m)	40.83	49.33	55.72	64.85

Etat de l'art • Synthèse • Caractérisation HT • Dispositif SAW • Capteur de pression • Variation compo

Cristallisation en lit de poudre

→ Surface (002) puis basculement en (201) vers 100-200 μ m → Moins de cristallisation de volume = nucléation plus courte

Cœur échantillon poli-miroir sous air

Etat de l'art • Synthèse • Caractérisation HT • Dispositif SAW • Capteur de pression • Variation compo

Cristallisation en lit de poudre

→ Forte orientation (002) sur plus de 1500 μ m (sauf ZrO₂-A) → Cristallisation de volume = faible influence sur la nucléation

Cœur échantillon P220 sous air

Etat de l'art • Synthèse • Caractérisation HT • Dispositif SAW • Capteur de pression • Variation compo

Cristallisation en lit de poudre

Université de Mons

Université de Mons

Comité d'accompagnement - Florian Dupla

$$\frac{k_{31}^2}{1 - k_{31}^2} = \frac{\pi}{2} \frac{f_M}{f_m} \tan\left[\frac{\pi}{2}\left(\frac{f_M}{f_m} - 1\right)\right]$$
$$s_{11}^E = \frac{1}{4\rho f_m^2 L^2}$$
$$\varepsilon = Cp \frac{t}{A}$$
$$d_{31} = k_{31} \sqrt{\varepsilon_{33}^T s_{11}^E}$$

Mesure de Cp et pertes à vide en température

T(°C)	T(°C) 200		400	500	550	
ε _r (mesurements)	10.64	10.96	11.94	15.53	18.75	
ε _r (literature) 10		10	12	15	18	

Setup pour l'émission et l'acquisition des SAW

Evolution du délai temporel et de la pression au cours de temps de mesure

Dilatométrie optique – Photo à 950°C

Etat de l'art • Synthèse • Caractérisation HT • Dispositif SAW • Capteur de pression • Variation compo

<u>Série 3</u>

- <u>Comparaison IET entre A10 et</u> <u>S13K1A0.5</u> (même rampe 10°C/min) :
- \rightarrow Comportements semblables
- → Pas d'hystérésis pour S13K1A0.5 = pas en accord avec $7 \text{ de } \Delta \alpha$

→ Endommagement pas réparé à 750°C car VR trop visqueux ?

- <u>Signal SAW S13K1A0.5</u>:
- → Pas d'hystérésis non plus
- → Chute monotone entre 200°C et 700°C

 \rightarrow S13K1A0.5 plus efficace aux HT

→ Forte influence d'une légère variation du verre résiduel

	Poids (g)	Prix (€/kg)	€/g	Coût €					
SrCO3	67.6267232	129	0.129	8.72384729					
TiO2	18.2927	33.9	0.0339	0.62012253					
SiO2	45.4142254	149	0.149	6.76671958					
K2CO3	6.33099961	80.25	0.08025	0.50806272					
Al2O3	2.33535189	150	0.15	0.35030278					
Total	140			16.9690549	Total raw ma	terials plaque	entière		
Coût des cycles	s de chauffe ?	P (kW)	t	€.kWh	Coût (€)				
Fusion	1500°C / 2h	12	2	0.15	3.6		TOTAL =	14.7868224	par capteur
Recuit	700°C / 1h	3	1	0.15	0.45				2 MHz
Cristallisation	900°C / 15h	3	15	0.15	6.75				(2 par plaque)
(Empreinte)	800°C / 2h	3	2	0.15	0.9				
Collage	1000°C / 2h	3	2	0.15	0.9				
Ablation laser		0.51	0.06	0.15	0.00459				
					12.60459	Total elec			